Установка Tensorflow
О технологиях

Установка Tensorflow

1308
7 минут

Захотелось нам на днях копнуть глубже в сторону Machine и Deep Learning. Поэтому в ближайшее время в блоге будет какое-то количество статей, посвященных этой теме.

А начнем мы с вами с того, что подготовим рабочее окружение, в котором будем проводить все наши эксперименты! В этой статье речь пойдет об установке:

  • TensorFlow
  • Pandas
  • Jupyter
  • matplotlib
  • scikit-learn

Установку всего необходимого можно проводить у себя на рабочей станции в виртуальной машине, а также в Google Cloud или AWS. Преимущество последних в том, что они предоставляют виртуальные машины с GPU, что существенно ускорит обработку больших объемов данных и вычислений. Пока что нам это не нужно, поэтому можно смело обойтись локальной виртуальной машиной. Итак, поехали!


Установка Jupyter

Итак, как я уже писал в статье «Jupyter Notebook — прототипирование облачной автоматизации на Python», использовать Jupyter Notebook-и в процессе разработки очень удобно, т.к. каждый блок кода можно повторить в произвольном порядке столько раз, сколько нужно. Более того, всегда есть возможность наглядно посмотреть на типы данных или построить нужный график для визуализации вычислений или зависимостей между обрабатываемыми объектами.

Установка Jupyter очень проста, делать мы это будем в CentOS 7


sudo yum -y install python-pip
sudo yum -y groupinstall 'Development Tools'
sudo pip install virtualenv

sudo pip install jupyter

cd ~/
mkdir analysis # директория для хранения Notebook-ов

После того, как установка закончится, необходимо настроить на постоянный запуск Jupyter сервер. Для этого вам необходимо сгенерировать хеш пароля для доступа к серверу. Это особенно актуально, если вы устанавливаете Jupyter в виртуальной машине в облаке Google или Amazon. Для этого выполните:

python

Далее необходимо сгенерировать сам пароль:

from notebook.auth import passwd
passwd()

Введите нужный вам пароль и сохраните строку вида ’sha1:’ куда-нибудь в текстовый файл.

Далее сгенерируем конфигурационный файл для Jupyter сервера:

jupyter notebook --generate-config

Вывод команды покажет вам, куда именно записался конфигурационный файл по-умолчанию. Отредактируйте его, изменив следующие опции:

c.NotebookApp.password = 'sha1:'
c.NotebookApp.port = 8888
c.NotebookApp.ip = '*'
c.NotebookApp.open_browser = False

Далее, необходимо прописать старт Jupyter в качестве сервиса. Создайте файл /etc/systemd/system/multi-user.target.wants/jupyter.service следующего содержания:

[Unit]
Description=Jupyter Notebook

[Service]
Type=simple
PIDFile=/run/jupyter.pid
ExecStart=/usr/bin/jupyter notebook --config=/home/centos/.jupyter/jupyter_notebook_config.py
User=centos
Group=centos
WorkingDirectory=/home/centos/analysis
Restart=always
RestartSec=10
#KillMode=mixed

[Install]
WantedBy=multi-user.target

Убедитесь, что в строчке, начинающейся с ExecStart, указан правильный путь до Jupyter и правильный путь до сгенерированного вами конфигурационного файла, в качестве пользователя и группы прописаны пользователь и группа, с которыми вы получаете доступ к виртуальной машине, а в качестве рабочей директории (WorkingDirectory) указана существующая директория, в которой будут храниться ваши Notebook-и.

Обновите конфигурацию systemd

systemctl daemon-reload

Запустите Jupyter:

systemctl status jupyter

Проверьте, что запуск прошел успешно, выполнив команду:

systemctl status jupyter

Подключитесь к серверу Jupyter, используя IP-адрес вашей виртуальной машины, порт 8888 и сгенерированный вами пароль.

Установка Tensorflow

Установка TensorFlow выполняется чуть более просто, чем Jupyter. Процесс установки буквально на все случаи жизни описан в официальной документации. Но все, что вам нужно сделать прямо сейчас, это выполнить команды

sudo pip install tensorflow # установка без поддержки GPU
sudo pip install tensorflow-gpu # если вам нужна поддержка GPU

После этого у вас будет возможность проверить работу TensorFlow, написав в NoteBook-е простенький сценарий:


import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

Выполнив который вы увидите в качестве вывода Hello, TensorFlow!.

Установка Pandas

Установка Pandas, который вероятнее всего потребуется вам в процессе экспериментов, выполняется как обычно:

sudo pip install pandas

Установка Matplotlib

И наконец осталось установить Matplotlib:


sudo pip install matplotlib

Установка Scikit-Learn

Еще одним жизненно-необходимым компонентом, который необходимо иметь обязательно, является scikit-learn. Доставим его так же, как и остальные зависимости:


sudo pip install scikit-learn
9 апреля 2025
Облако как конструктор: разворачиваем типовой проект с готовыми компонентами
Современные облачные платформы — это не просто набор виртуальных машин, а целая экосистема сервисов. K2 Cloud не исключение, и мы постоянно развиваем портфолио готовых сервисов, добавляем новые возможности. В этой статье разберём, как можно быстро развернуть типовой проект в облаке на примере Nextcloud — популярного open-source решения для хранения файлов и совместной работы с ними.
1 минута
134
20 февраля 2025
Модели облачных услуг: IaaS, PaaS и SaaS
Гид по основным услугам в публичном облаке, их преимуществам и разделению ответственности между провайдером и клиентом.
2 минуты
990
30 января 2025
Оптимизация облака для 1С

Чаще всего для проверки производительности систем 1С компании используют тест Гилева, который не всегда отвечает запросам бизнеса. Он не способен дать объективную оценку, подходит ли конкретное железо под поставленные задачи.

В статье подробно рассказываем, какие существуют альтернативные методы тестирования производительности 1С в облаке.

1 минута
269
18 декабря 2024
Всепроникающая безопасность: какие облачные ИБ-решения будут больше всего востребованы и почему
Облачные решения продолжают активно осваивать новые ИТ-территории, и сфера кибербезопасности — не исключение. Облачным провайдерам есть что предложить в самых разных сегментах — от комплексной защиты бизнес-сред до отдельных кастомизированных продуктов для решения конкретных задач ИБ. О технологиях, на которые будет расти спрос до 2030 года, в материале специального проекта K2 Cloud и CNews.ru.
1 минута
384
9 декабря 2024
Облачные тренды-2030: как будет меняться ИТ-климат
Вычислительные ресурсы предоставляются в аренду, разработка унифицируется, а рутинные задачи делегируются ИИ. В целях оптимизации компании всё чаще предпочитают использовать серверы и процессоры только по мере надобности и заменять собственную инфраструктуру на облачные платформы. Про главные тренды в ИТ последних и предстоящих лет рассказали в статье специального проекта K2 Cloud и CNews.ru.
1 минута
470
5 ноября 2024
Облачные тренды 2030: специальный проект К2 Cloud и CNews
Как изменится ИТ-климат в ближайшие годы? Что станет драйверами развития облачных технологий? Какие мировые тренды будут актуальны в России? К2 Cloud проанализировал облачные тренды по направлениям от разработки до ИБ, которые будут актуальны до 2030 года на российском и мировом рынке, и рассказал об этом в большом специальном проекте на CNews.
1 минута
613
scrollup