Jupyter Notebook – прототипирование облачной автоматизации на Python
О технологиях

Jupyter Notebook – прототипирование облачной автоматизации на Python

1639
7 минут

В этой статье мы покажем вам как установить Jupyter, запустить ваш первый notebook и написать первый прототип скрипта, автоматизирующего работу с виртуальными машинами в облаке AWS или K2 Cloud.

Далее вы сможете легко использовать этот подход для прототипирования абсолютно любых Python приложений!

Требования

  • Минимальное знание Python
  • Минимальное знание Linux

Что такое Jupyter

Jupyter — это проект с открытым исходным кодом, распространяющимся по лицензии BSD, который родился из проекта IPython для для поддержки интерактивной работы с данными в Data Science и Machine Learning, другими словами для BigData.

Чем он может быть полезен DevOps инженеру? Jupyter позволяет нам запускать Python код прямо в браузере, сохраняя при этом и сам код и результат его исполнения в .ipynb файле, который одинаково отображается абсолютно на любом ПК или сервере. С его появлением прототипировать Python приложения стало существенно проще. А если выложить .ipynb файл на GitHub или, например, внутрикорпоративный репозиторий исходных кодов, становится очень просто показывать коллегам примеры реализации тех или иных кусков кода и конечно же прототипировать функции, классы, отдельные приложения и сервисы.

Пример интерфейса Jupyter со структурой проекта:

Jupyter-project-structure-e1502902016316.png

Пример интерфейса Jupyter с прототипом функции (отображение эластичных IP-адресов boto):

Jupyter-prototype-example-e1502901952842.png

Установка Jupyter

Лично я предпочитаю для любого прототипа использовать отдельную директорию и отдельное виртуальное окружение, куда можно поставить все необходимые для прототипа зависимости. Соответственно, для прототипа любого автоматизирующего AWS или K2 Cloud скрипта, я всегда делаю что-то вроде:


mkdir c2_boto_test
cd c2_boto_test
virtualenv venv
source venv/bin/activate
pip install boto
pip install jupyter

Далее я скачиваю в эту же директорию c2rc.sh файл с настройками подключения к API-сервису K2 Cloud и пытаюсь реализовать нужную мне функциональность, удобно перезапуская разные блоки кода в нужной мне последовательности.

Для того, чтобы открыть в браузере интерфейс Jupyter, выполните команду:


	 jupyter notebook

Если же интерфейс Jupyter не открылся в новой вкладке вашего браузера, внимательно посмотрите на вывод команды, возможно, порт 8888 уже занят вашим приложением или же войти в интерфейс Jupyter придется самостоятельно, введя в браузер что-то вроде:


 http://localhost:8888/tree?token=b2eca56a5eb3c93cfb1f121c85223ee74226f58e75f59db5

Перед вами откроется директория вашего проекта, с файлами и директориями внутри которой можно будет работать прямо из браузера. Как только вы получите нужный вам результат, блок кода в .ipynb файле можно показать коллеге, включить в основное приложение или сервис или же выложить на GitHub.

Работа с эластичными (публичными) IP-адресами в boto

В качестве небольшого бонуса тем, кто дочитал статью до конца приведу пример получения списка, резервирования и освобождения эластичных (публичных) IP-адресов в boto в K2 Cloud:

GitHub: https://github.com/andreivmaksimov/boto_examples/blob/master/boto_elastic_ip_management_example.ipynb


#!/usr/bin/env python
# coding: utf-8

import os
import boto

EC2_URL = os.environ['EC2_URL']
EC2_ACCESS_KEY = os.environ['EC2_ACCESS_KEY']
EC2_SECRET_KEY = os.environ['EC2_SECRET_KEY']


class IPManager():
    def __init__(self):
        self.conn = boto.connect_ec2_endpoint(
            EC2_URL, 
            aws_access_key_id=EC2_ACCESS_KEY,
            aws_secret_access_key=EC2_SECRET_KEY
        )
    def list_ips(self):
        eips = self.conn.get_all_addresses()
        for ip in eips:
            print ip.public_ip
    def allocate_ip(self):
        ip = self.conn.allocate_address()
        return ip.public_ip
    def release_ip(self, ip):
        self.conn.release_address(ip)


mgr = IPManager()
mgr.list_ips()

ip = mgr.allocate_ip()
print ip

mgr.list_ips()

mgr.release_ip(ip)

mgr.list_ips()

Заключение

Jupyter является отличным помощником как для начинающего, так и опытного Python разработчика или DevOps-инженера, позволяя нам быстро и эффективно прототипировать нужные функции, сервисы и даже целые приложения. Более того, Jupyter поддерживает графические библиотеки типа Seaborn, Matplotlib и Plotly, что легко позволит вам не только работать с любыми данными, но и визуализировать их.

30 января 2025
Оптимизация облака для 1С

Чаще всего для проверки производительности систем 1С компании используют тест Гилева, который не всегда отвечает запросам бизнеса. Он не способен дать объективную оценку, подходит ли конкретное железо под поставленные задачи.

В статье подробно рассказываем, какие существуют альтернативные методы тестирования производительности 1С в облаке.

1 минута
196
18 декабря 2024
Всепроникающая безопасность: какие облачные ИБ-решения будут больше всего востребованы и почему
Облачные решения продолжают активно осваивать новые ИТ-территории, и сфера кибербезопасности — не исключение. Облачным провайдерам есть что предложить в самых разных сегментах — от комплексной защиты бизнес-сред до отдельных кастомизированных продуктов для решения конкретных задач ИБ. О технологиях, на которые будет расти спрос до 2030 года, в материале специального проекта K2 Cloud и CNews.ru.
1 минута
333
9 декабря 2024
Облачные тренды-2030: как будет меняться ИТ-климат
Вычислительные ресурсы предоставляются в аренду, разработка унифицируется, а рутинные задачи делегируются ИИ. В целях оптимизации компании всё чаще предпочитают использовать серверы и процессоры только по мере надобности и заменять собственную инфраструктуру на облачные платформы. Про главные тренды в ИТ последних и предстоящих лет рассказали в статье специального проекта K2 Cloud и CNews.ru.
1 минута
411
5 ноября 2024
Облачные тренды 2030: специальный проект К2 Cloud и CNews
Как изменится ИТ-климат в ближайшие годы? Что станет драйверами развития облачных технологий? Какие мировые тренды будут актуальны в России? К2 Cloud проанализировал облачные тренды по направлениям от разработки до ИБ, которые будут актуальны до 2030 года на российском и мировом рынке, и рассказал об этом в большом специальном проекте на CNews.
1 минута
558
25 июня 2024
1С в облаке: как повысить производительность приложений
Ни для кого не секрет, что 1С — достаточно требовательна с точки зрения размещения, будь то локальное «железо» или облачная инфраструктура.

В этой статье мы поговорим о тюнинге производительности систем 1С. Обсудим, какие узкие места в инфраструктуре могут повлиять на скорость отклика 1С, и дадим рекомендации по их устранению.
1 минута
1603
19 февраля 2024
Cloud Security Services: безопасное облако для бизнеса
По данным из открытых источников, 9 из 10 опрошенных российских компаний с выручкой от 15 млрд руб. в год активно используют облачные сервисы. Но вместе с востребованностью облачной модели возрастает и обеспокоенность бизнеса: можно ли в облаке выстроить надежную защиту данных?
1 минута
1195
scrollup